
Experiments with Bayesian
Inference Accelerators
(Why AI Algorithms that are NOT Deep
Neural Nets Also Want to be Silicon)

University of Wisconsin-Madison
Virtual Computer Architecture Seminar
October 15, 2020

Rob A. Rutenbar
Senior Vice Provost for Research
Professor, CS & ECE

Accelerators: Why Now…?

• Moore’s Law
• A great 40-year run
• Now, running out of gas

• Apps too slow, or
too power-hungry…?

• Let’s try transistors!

http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

Focus: Deep Neural Nets (DNNs)

• In hindsight, hardware is obvious here:
• Breakthrough performance; widely useful; too slow on CPU

• And -- look like (giant) DSP tasks:
• Feed-forward (mostly), limited operators, limited precision, etc.
• Main differences: scale, #weights, data movement

NIPS 2012

Aside: Prior to Today’s Bayesian HW
• Speech recognition in Si: CMU In Silico Vox project

ADCADC

Filter1

Filter2
Filter3

FilterN

...

Filter1

Filter2
Filter3

FilterN

...

x1
x2
x3
.
.
.
xn

x1
x2
x3
.
.
.
xnSampling

Feature
extraction

DSP

wwww

1

a11
a12

b1(.)

2

a22
a23

b2(.)

3

a33
a34

b3(.)

1

a11
a12

b1(.)

1

a11
a12

b1(.)

2

a22
a23

b2(.)

2

a22
a23

b2(.)

3

a33
a34

b3(.)

3

a33
a34

b3(.)

1

a11
a12

b1(.)

1

a11
a12

b1(.)

2

a22
a23

b2(.)

2

a22
a23

b2(.)

3

a33
a34

b3(.)

3

a33
a34

b3(.)

1

a11
a12

b1(.)

1

a11
a12

b1(.)

2

a22
a23

b2(.)

2

a22
a23

b2(.)

3

a33
a34

b3(.)

3

a33
a34

b3(.)

2

a22
a23

b2(.)

2

a22
a23

b2(.)

3

a33
a34

b3(.)

3

a33
a34

b3(.)

3

a33
a34

b3(.)

3

a33
a34

b3(.)

Acoustic

“Rob”

Adaptation

HMM
Search

Word...
Rob R AO B
Bob B AO B
...

Language

Rob à says

Adaptation

Acoustic units à Words à Language

Adaptation

“ao”

Feature
Scoring

HMM / Viterbi Search
Language Model Search

247x Faster than realtime
60,00-word vocab

65nm, 500MHz, 2W

Low-Power mobile search
20,000-word vocab

65nm, 100MHz, 92 mW

28x Faster than realtime
2000-word vocab
65nm, 200MHz

Economist,
March 12, 2005

CMU accelerators for high-speed
recognition went to market as
Voci Technologies

Started life as non-DNN FPGAs…

... but ended up as DNN-GPUs

*Edited from: https://www.mergersight.com/post/medallia-announces-59m-acquisition-of-voci-technologies

So, DNNs – Is This All This Is…?

• Actually -- No • Focus: Bayesian inference
• X = hypothesis; Y = evidence

P(X|Y) =
P(Y|X) P(X)

P(Y)

Posterior

PriorLikelihood

Marginal
Likelihood

Inference on Prob Graphical Models
• PGMS include:

• Nodes: encode what we observe/know, how much we believe it
• Edges: encode relationships (joint dependencies/affinities)
• Inference: solve for “most likely” labels @ nodes

Apps

x2x1

x4x3

x5

build

Unified
Graph
Models

solve
Inference:

Most
Likely
Labels

Source for graph, montage: Carsten Rother, Microsoft Research Cambridge, ICCV’09
Source for pose est: Pushmeet Kohil, Microsoft Research Cambridge, ibPRIA’11

Short Tutorial: Inference on PGMs
• 4 nodes, 3 edges, 3 discrete labels

• Markov Random Field (MRF), in Factor Graph form

X1 X2 X3 X4

ϕ1

ϕ12

ϕ2 ϕ3

ϕ23

ϕ4

ϕ34

Xi take values in { ¢ , n , u } -- discrete label set

PGMs: Factors ϕ
• ϕi and ϕij are affinities

X1# X2# X3# X4#

ϕ1

ϕ12

ϕ2 ϕ3

ϕ23

ϕ4

ϕ34

X1 ϕ1
¢ 1
n 10
u 5

X1 X2 ϕ12
¢ ¢ 8
¢ n 2
¢ u 1
n ¢ 3
n n 9
n u 1
u ¢ 2
u n 5
u u 10

Φ’s describe how much
the variables “want to

be” different label values

PGM: Labeling Entire Graph
• What is “affinity” of whole graph for a set of labels?
• Answer: Product of the factors ϕ

X1# X2# X3# X4#

ϕ1

ϕ12

ϕ2 ϕ3

ϕ23

ϕ4

ϕ34

n n ¢ u

= ϕ1(n) ϕ12 (n,n) ϕ2(n) ϕ23 (n,¢) ϕ3(¢) ϕ34 (¢,u) ϕ4(u)∏ϕ

From Factors to Probabilities
• Affinity != probability. How to get probabilities?
• Answer: Normalize via Z (called ‘partition function’)

X1# X2# X3# X4#

ϕ1

ϕ12

ϕ2 ϕ3

ϕ23

ϕ4

ϕ34

n n ¢ u

ϕ1(-) ϕ12 (-,-) ϕ2(-) ϕ23 (-,-) ϕ3(-) ϕ34 (-,-) ϕ4(-)

∑ ϕ1(-) ϕ12 (-,-) ϕ2(-) ϕ23 (-,-) ϕ3(-) ϕ34 (-,-) ϕ4(-)
X1,X2,X3,X4

Pr[X1,X2,X3,X4]=

Z

Focus: MAP Inference Problem
• Maximum A Posteriori inference task
• Question: What is most likely set of labels for graph?

X1# X2# X3# X4#

ϕ1

ϕ12

ϕ2 ϕ3

ϕ23

ϕ4

ϕ34

? ? ? ?

ϕ1(-) ϕ12 (-,-) ϕ2(-) ϕ23 (-,-) ϕ3(-) ϕ34 (-,-) ϕ4(-)argmax
X1,X2,X3,X4 Z

Actual MAP Inference Formulation
ϕ1(-) ϕ12 (-,-) ϕ2(-) ϕ23 (-,-) ϕ3(-) ϕ34 (-,-) ϕ4(-)argmax

X1,X2,X3,X4 Z

Ignore Z – it’s a constant, doesn’t matter
Let Ɵ = -logϕ (from stat physics…)

Ɵ1(-)+Ɵ12 (-,-)+Ɵ2(-)+Ɵ23 (-,-)+Ɵ3(-)+Ɵ34 (-,-)+Ɵ4(-)
= argmin
X1,X2,X3,X4

“Minimum Energy” formulation of MAP inference

“Big 3” Inference Methods for PGMs

x2x1

x4x3

x5

Belief
Propagation

x2x1

x4x3

x5

Sampling
(Gibbs/MCMC)

x2!x1!

x4!x3!

x5!

7"

 S

 T

6" 1"

2"1/2" 3"

3"

1"

3"

Graph Cuts
(à Network Flow)

Key Collaborators

x2x1

x4x3

x5

Belief
Propagation

x2!x1!

x4!x3!

x5!

7"

 S

 T

6" 1"

2"1/2" 3"

3"

1"

3"

Graph Cuts
(à Network Flow)

x2x1

x4x3

x5

Sampling
(Gibbs/MCMC)

Jungwook Choi
PhD Illinois ‘15
Hanyang University

Tianqi Gao
PhD Illinois ‘20
Apple SEG

Glenn Ko
PhD Illinois ‘17
Harvard

“Big 3” Inference Methods for PGMs

x2x1

x4x3

x5

Belief
Propagation

Belief Propagation: Iterative & Local

• Smart order of local, message passing computations
(like Viterbi!) that calculate a “belief” per label, per node

X1# X2# X3# X4#

ϕ1

ϕ12

ϕ2 ϕ3

ϕ23

ϕ4

ϕ34

If graph is a chain/tree, BP converges
to optimum in 2 passes of messaging

Belief Propagate: Iterative & Local

• But if graph has loops – no guarantee of convergence!

If graph is “loopy” -- not a chain/tree,
simple BP message passing may diverge

Why We Care: Images are PGMs
Original Image

Processed Image

PGM inference

Input pixel Yi = constant

Output pixel Xi = TBD

Image MRF
A pixel = 5-connected node

4 compass neighbors
+ original pixel

P(X|Y) =
P(Y|X) P(X)

P(Y)

= (1/Z) Pf ~ -Sq

Bayesian

Our BP: Sequential Tree-Reweighting
• Idea: Decompose a loopy graph to a set of trees, do

inference sequentially across trees, recombine “smart”
• [Kolmogorov PAMI’06]: Empirically good on loopy case; slow

Decompose

[p]

Recombine “smart”: Energy[p] = weighted sum from decomp

HW: First, Streaming “Diagonal Order” Arch

• Decoupled, streaming arch
• Launch/retire 1 pixel/clock

• Complete label-set likelihood
updates (~1Kb) for all labels

• 14-stage pixel pipeline
• So: 14 pixels “in flight” / clock

1 2

3

4

5d
6d d

Key: Diagonal ordering of all
message pass à parallelism

Next: Parallel/Configurable Pipes
• Not just one pipeline any longer: more parallel…

P Parallel
processor
elements

(pixel streams)

Efficient memory
subsystem overlaps
BW and computation,
checks for data conflicts

Novel, configurable
Factor-Eval Units
removes O(|labels|2)
complexity (FFT tricks)

Results: Configurable BP Engine
• Xilinx Virtex5 FPGA
• 12-40X faster than SW

(PE = 4, ~2015)

• No loss of quality
• First custom HW to

run >1 Middlebury
ML benchmark

Input Gnd Truth TRW-S SW BP Engine

“Big 3” Inference Methods for PGMs

x2!x1!

x4!x3!

x5!

7"

 S

 T

6" 1"

2"1/2" 3"

3"

1"

3"

Graph Cuts
(à Network Flow)

GC: Transform from MRF to Network Flow
Start: Binary Label MRF

7

X1

X3X4

X2

Src

Sink

6 1

21 6

6

2
2

1
6

6

Build: Network Flow Graph

Min Edge Cut
Separates
graph into 2
disconnected
pieces

“0”

“1”
Src-side:

MAP value 0
Sink-Side:

MAP value 1

GC: Why Hardware

• Push-Relabel Network Flow: a ”min cut” algorithm can
be executed (almost) entirely with just neighbor values

• Neighbor: Nodes that share an edge in PGM (N-E-W-S)
• Iterative and Convergent: a “well behaved” algorithm

àPerfect for large images, modeled as grid-MRFs
àThere are tricks for doing gray-scale/color images

GC: Pixel-Parallel Array Processor

• FPGA target, one processor per pixel

Pixel Processor: Key Tricks

• Serial bottlenecks
• Cannot push flow to a node

that is already “pushing” out

• Solution: Checkerboard
scheduling + ordering

• Not all local: Global
convergence detection

• Solution: O(rows+cols)
shift register to array
center to check activity

…

…

… …

…

…

… …

active from left

active from downside

active
active to upside

active to right

Array “Tile”: How Big?
• Interesting example of

logical physical co-design
256 pixel = 16x16

Xilinx Virtex5
256 pixel = 8x32

Xilinx Virtex5

1024 pixel = 16x64
Xilinx Virtex
Ultra-Scale

1 row of
processors

FAIL!

Next: What About “Big” Images?
• We built a full virtual tile (memory) system on array

IMAGE = Array of PAGES (<20)

On-chip Memory:
BRAM array

PAGE = Array of
TILES (<100)

TILE = Array of
PIXELS (~1000)

Off-chip Memory: DDR4

On-chip BRAM

Virtual Tile Architecture

• Virtual tiles “stack” on the
physical tile array on-chip

• Geometric nuances (lots!)
at tile (and page) edges

L
Virtual Tiles

Physical tile
processor array

Multiple
virtual tiles

Tile 1 Tile 2

Tile 3 Tile 4

Pixel-Processor
Array

Physical tile array

GC Virtual Tile Engine: Results
1536-pixel

tile array
AWS F-node

(Xilinx UltraScale)

And – It Really Works on Real Images

[1] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother, “A comparative study of en- ergy minimization methods for markov random fields with smoothness- based
priors,” IEEE transactions on pattern analysis and machine in- telligence, vol. 30, no. 6, pp. 1068–1080, 2008.
[2] A. Nikitakis and I. Papaefstathiou, “Highly efficient reconfigurable par- allel graph cuts for embedded vision,” in Proceedings of the 2016 Con- ference on Design, Automation & Test in Europe. EDA Consortium,
2016, pp. 1405–1410.
[3] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman, “Geodesic star convexity for interactive image segmentation,” in Pro- ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

“Big 3” Inference Methods for PGMs

x2x1

x4x3

x5

Sampling
(Gibbs/MCMC)

Gibbs Sampling: Serial Baseline

• Generate samples of xi, from right prob
distribution, based on neighbors

• Lets us compute Pr(xi = Label[k]) ∀ k
• Like GC: iterate to convergence

Gibbs Sampler (GS) Core

• Up to 64 labels/node

• 32b variable fixed-pt

• Tightly coupled PRNG

• Iterative architecture
for small footprint

Two Levels of Parallelism
Sample independent tiles in parallel –
treat as if they were separate images

Sample independent nodes in parallel –
checkerboard / graph coloring schedule

while (< max Gibbs sampling iterations)
foreach (tile in an image)

while (< max tile sampling iterations)
foreach (node in a tile)

sample (*)

PGMA: Prototype PGM Accelerator

• TSMC 16nm FFC
• PGMA area: 2.3 x 1.3mm2

• ~2M gates, 450MHz
• Part of a larger SOC experiment at

Harvard called SM5: ML for IOT
Refs: Ko et al., VLSI 2020. Whatmough et al. VLSI, 2020.

VLSI 2020

PGMA vs A53 vs eFPGA (on SOC)

• PGMA: 1000X+ throughput vs CPU; 6X+ ops/W vs eFPGA

A53

A53

eFPGA
eFPGA

PGMA

PGMA

PGMA ML Results

Conclusions

x2x1

x4x3

x5

Belief
Propagation

x2!x1!

x4!x3!

x5!

7"

 S

 T

6" 1"

2"1/2" 3"

3"

1"

3"

Graph Cuts
(à Network Flow)

Jungwook Choi
PhD Illinois ‘16
Hanyang University

Tianqi Gao
PhD Illinois ‘20
Apple SEG

Glenn Ko
PhD Illinois ‘17
Harvard

Belief Prop

x2x1

x4x3

x5

Sampling
(Gibbs/MCMC)

∃ (AI apps X) [interesting(X) ∧ ¬DNN(X) ∧ hardwareworthy(X)]

Acknowledgements

• Contributors:
• Harvard: Yuji Chai, Marco Donato, Paul N. Whatmough,

Thierry Tambe, David Brooks and Gu-Yeon Wei
• Illinois: Paris Smaragdis, Minje Kim, Shang-nien Tsai

• Sponsors:
• DARPA/SRC: FCRP C2S2, SONIC, JUMP ADA
• DARPA CRAFT
• Intel and ARM

