Experiments with Bayesian Inference Accelerators (Why Al Algorithms that are NOT Deep Neural Nets Also Want to be Silicon)

University of Wisconsin-Madison Virtual Computer Architecture Seminar October 15, 2020

Rob A. Rutenbar Senior Vice Provost for Research Professor, CS & ECE

Accelerators: Why Now...?



Moore's Law

- A great 40-year run
- Now, running out of gas

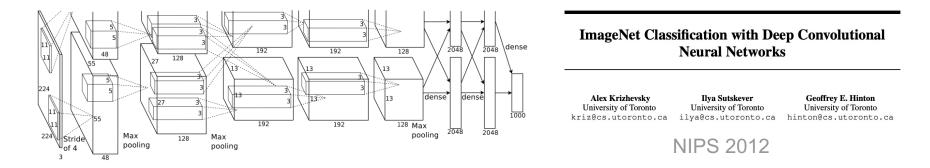
• Apps too slow, or too power-hungry...?

• Let's try transistors!

Pitt Research

http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

Focus: Deep Neural Nets (DNNs)



In hindsight, hardware is obvious here:

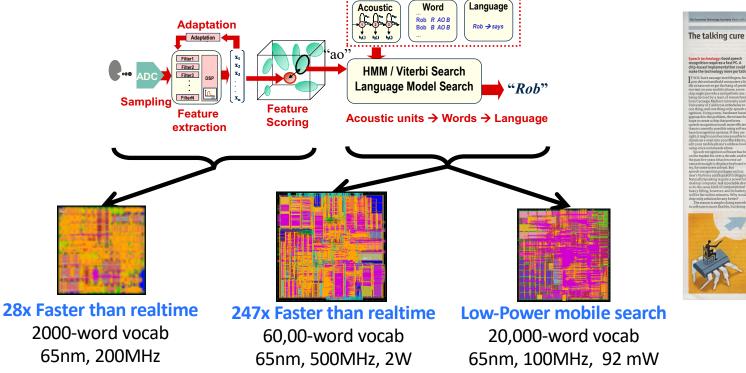
• Breakthrough performance; widely useful; too slow on CPU

And -- look like (giant) DSP tasks:

- Feed-forward (mostly), limited operators, limited precision, etc.
- Main differences: scale, #weights, data movement

Aside: Prior to Today's Bayesian HW

• Speech recognition in Si: CMU In Silico Vox project



Economist, March 12, 2005

Medallia announces \$ acquisition

of Voci Technologies

in

Medallia acquires artificial intelligence speech transcription company, Voci Technologies for \$59M

MEDALLIA VOCI

CMU accelerators for high-speed recognition went to market as **Voci Technologies**

Started life as non-DNN FPGAs...

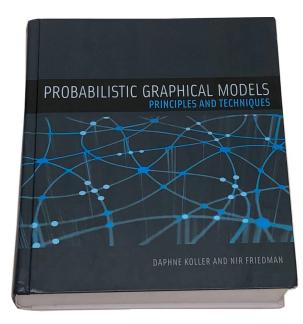
"Voci transcribes 100% of live and recorded calls into text that can be analyzed quickly to determine customer satisfaction, adding a powerful set of signals to the Medallia Experience Cloud. At the same time, Voci enables call analysis moments after each interaction has completed, optimizing every aspect of call center operations securely. Especially important as virtual and remote contact center operations take shape."

... but ended up as DNN-GPUs

*Edited from: https://www.mergersight.com/post/medallia-announces-59m-acquisition-of-voci-technologies

So, DNNs – Is This All This Is...?

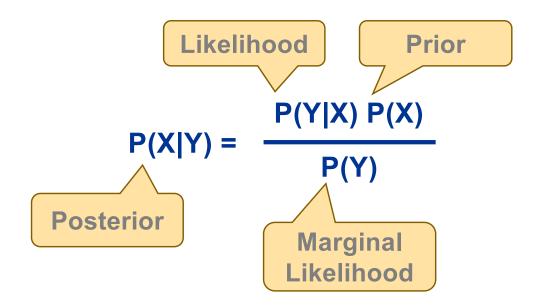
• Actually -- No



Pitt Research

• Focus: Bayesian inference

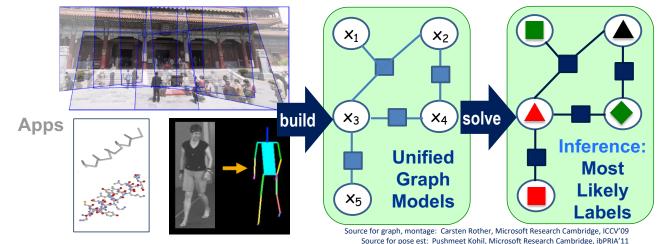
• X = hypothesis; Y = evidence



Inference on Prob Graphical Models

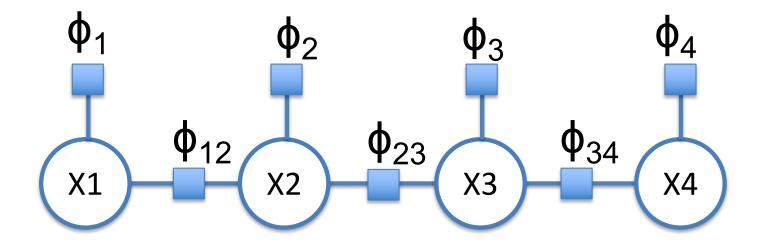
PGMS include:

- Nodes: encode what we observe/know, how much we believe it
- Edges: encode relationships (joint dependencies/affinities)
- Inference: solve for "most likely" labels @ nodes



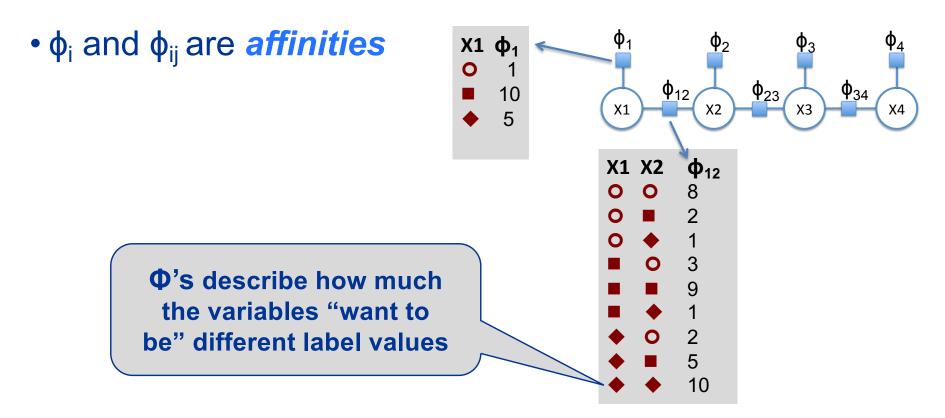
Short Tutorial: Inference on PGMs

- 4 nodes, 3 edges, 3 discrete labels
 - Markov Random Field (MRF), in Factor Graph form



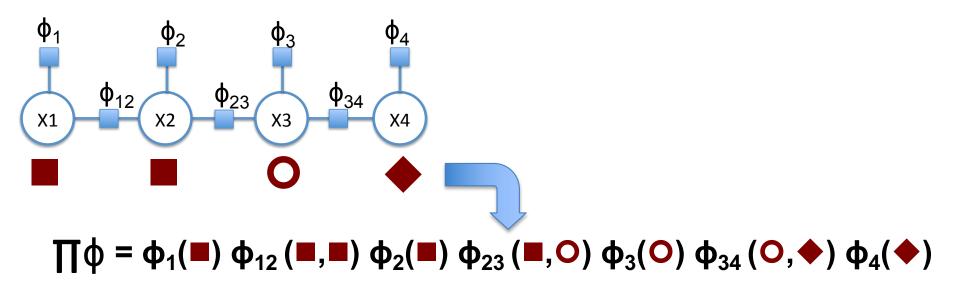
Xi take values in { ○ , ■ , ◆ } -- discrete label set

PGMs: Factors \$\phi\$



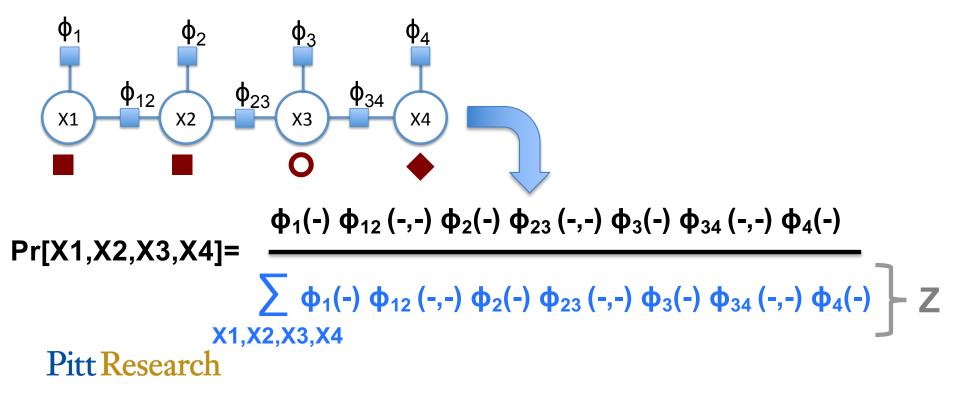
PGM: Labeling Entire Graph

- What is "affinity" of whole graph for a set of labels?
- Answer: Product of the factors φ



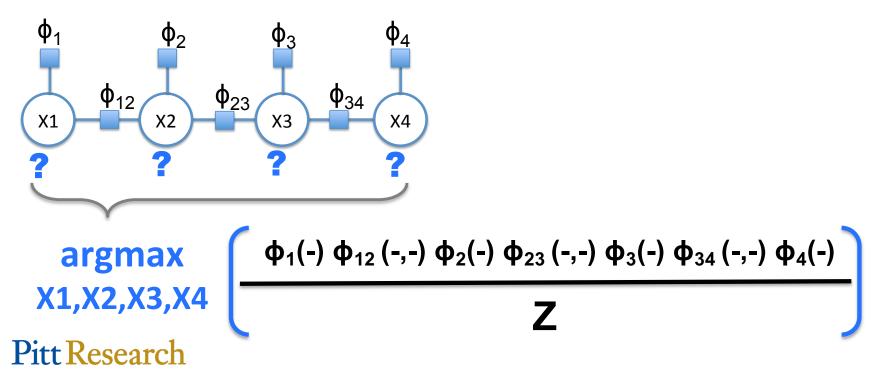
From Factors to Probabilities

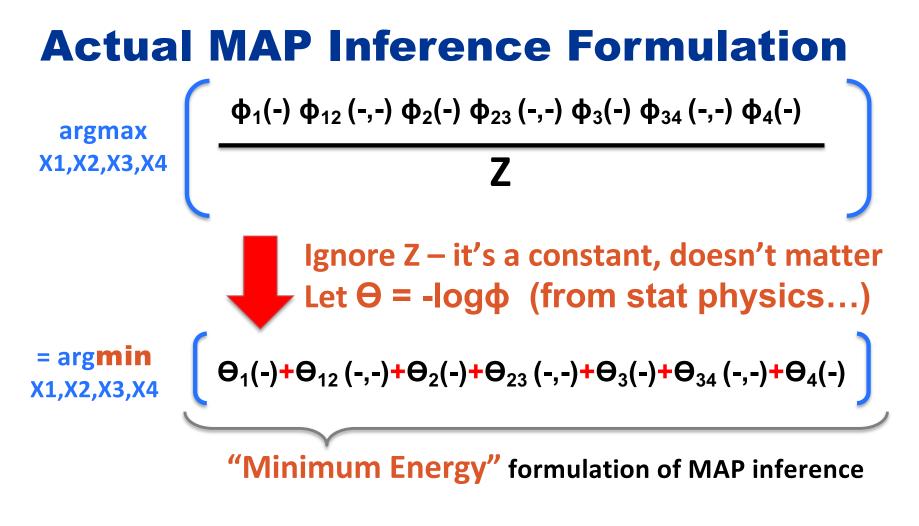
- Affinity != probability. How to get probabilities?
- Answer: Normalize via Z (called 'partition function')



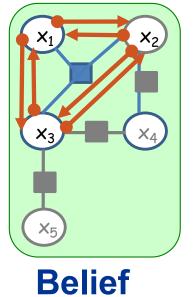
Focus: MAP Inference Problem

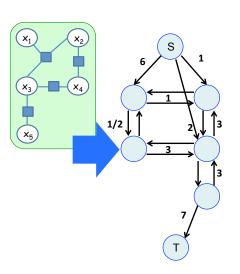
- Maximum A Posteriori inference task
- Question: What is **most likely** set of labels for graph?





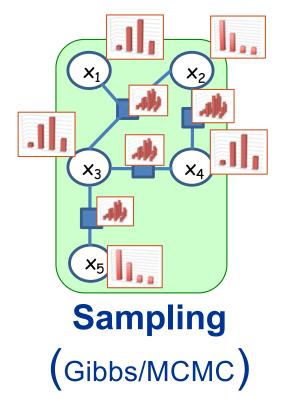
"Big 3" Inference Methods for PGMs



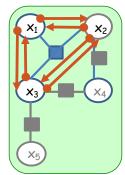


Belief Propagation

Graph Cuts (→ Network Flow)

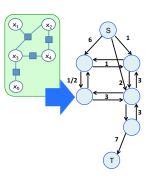


Jungwook Choi PhD Illinois '15 Hanyang University

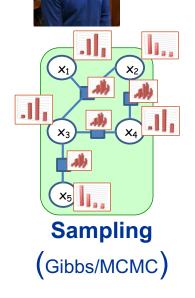


Belief Propagation

Tianqi Gao PhD Illinois '20 Apple SEG

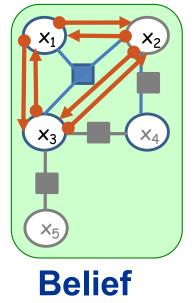


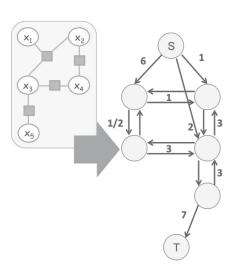
Graph Cuts (→ Network Flow)



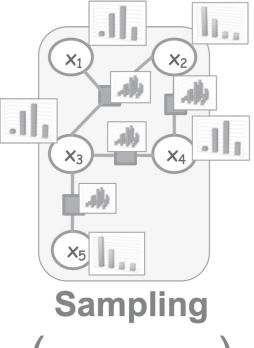
Glenn Ko PhD Illinois '17 Harvard

"Big 3" Inference Methods for PGMs





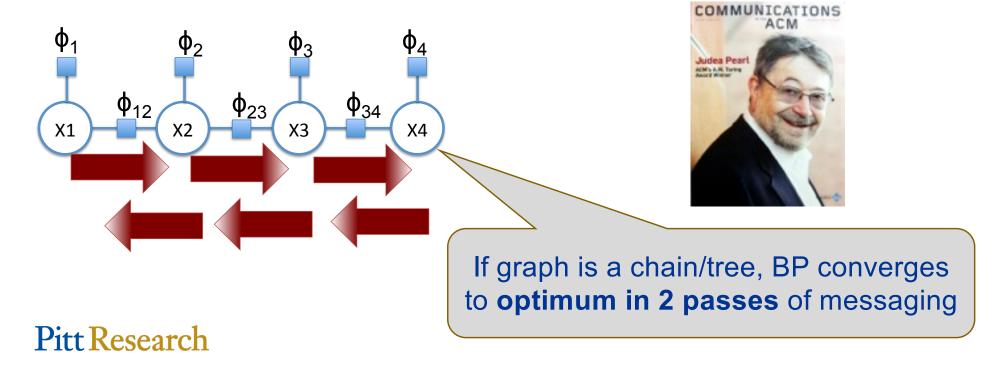
Belief Propagation Graph Cuts (→ Network Flow)



(Gibbs/MCMC)

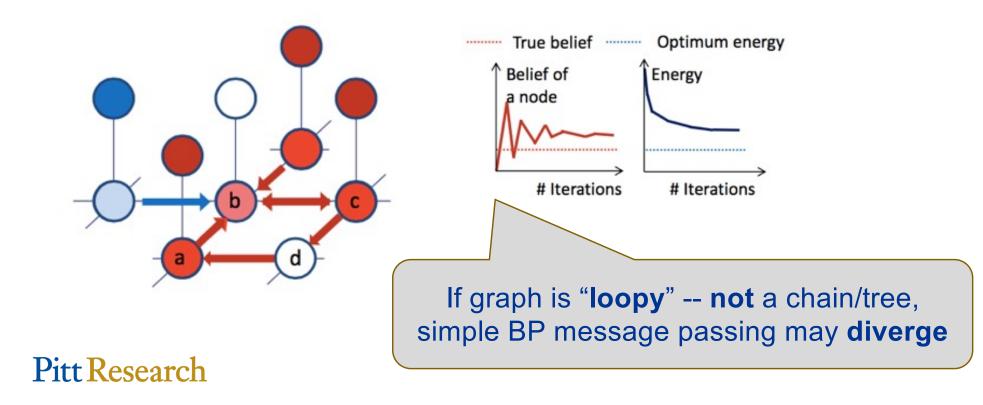
Belief Propagation: Iterative & Local

• Smart order of **local**, **message passing** computations (like Viterbi!) that calculate a "**belief**" per label, per node

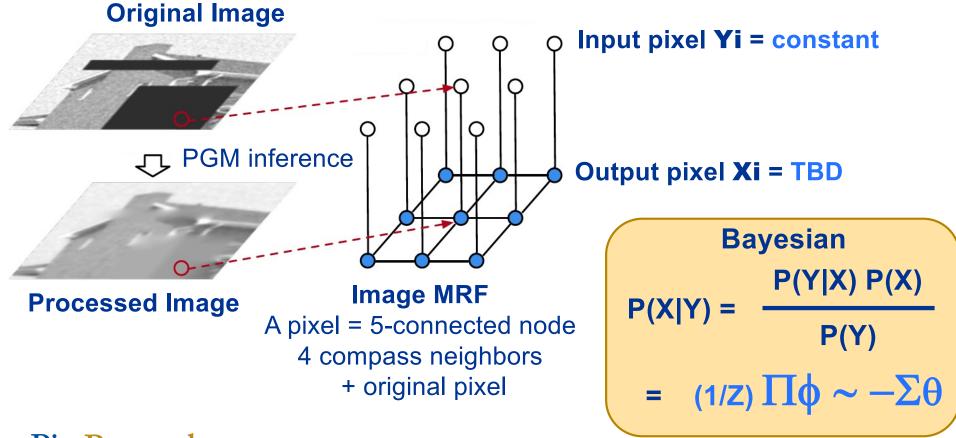


Belief Propagate: Iterative & Local

• But if graph has **loops** – **no guarantee** of convergence!

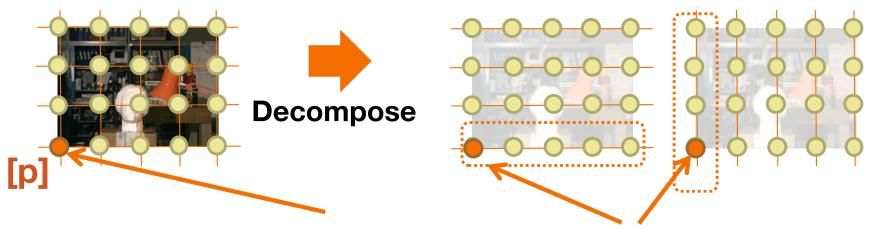


Why We Care: Images are PGMs



Our BP: Sequential Tree-Reweighting

- Idea: Decompose a loopy graph to a set of trees, do inference sequentially across trees, recombine "smart"
 - [Kolmogorov PAMI'06]: Empirically good on loopy case; **slow**

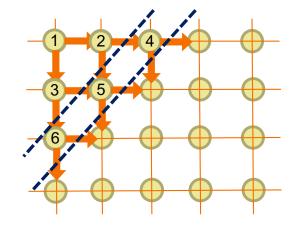


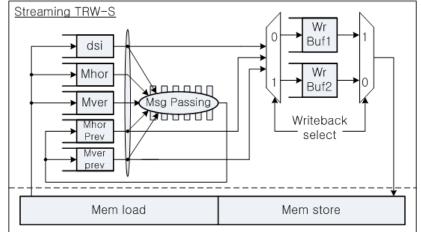
Recombine "smart": Energy[p] = weighted sum from decomp

HW: First, Streaming "Diagonal Order" Arch

Key: Diagonal ordering of all message pass → parallelism

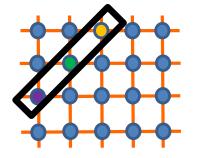
- Decoupled, streaming arch
- Launch/retire 1 pixel/clock
 - Complete label-set likelihood updates (~1Kb) for all labels
- 14-stage pixel pipeline
 - So: 14 pixels "in flight" / clock



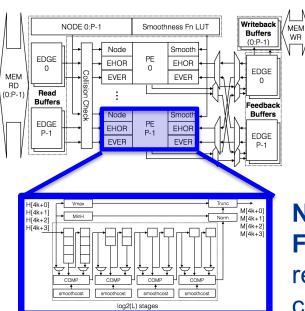


Next: Parallel/Configurable Pipes

• Not just one pipeline any longer: *more parallel*...



P Parallel processor elements (pixel streams)

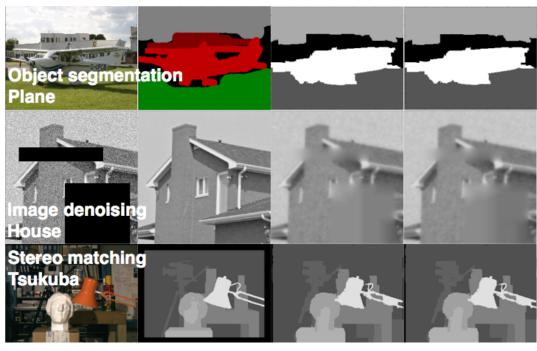


Efficient memory subsystem overlaps BW and computation, checks for data conflicts

Novel, configurable Factor-Eval Units removes O(|labels|²) complexity (FFT tricks)

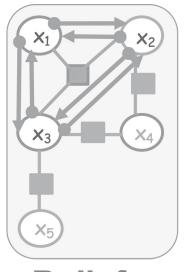
Results: Configurable BP Engine

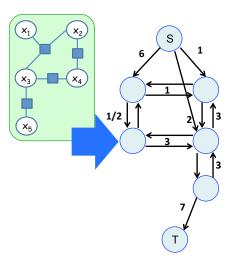
- Xilinx Virtex5 FPGA
- **12-40X** faster than SW (PE = 4, ~2015)
- No loss of quality
- First custom HW to run >1 Middlebury ML benchmark



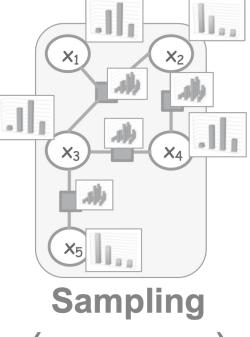
Input Gnd Truth TRW-S SW BP Engine

"Big 3" Inference Methods for PGMs



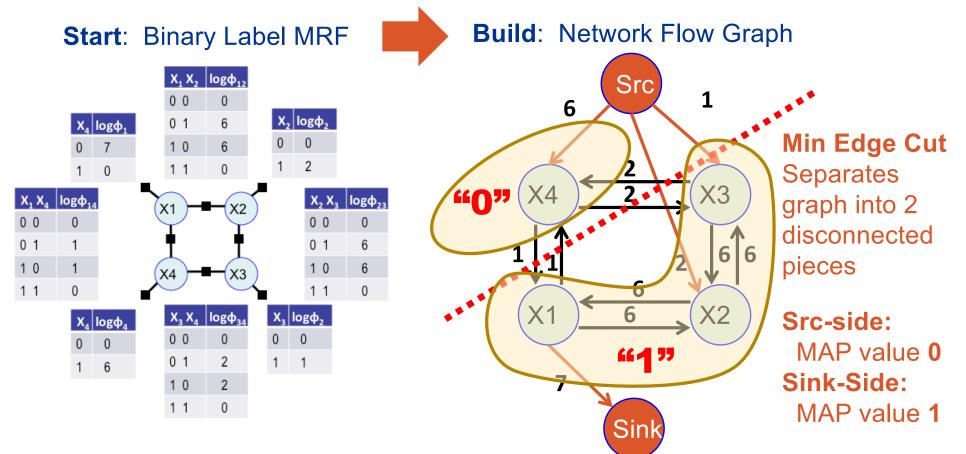


Graph Cuts (→ Network Flow)



(Gibbs/MCMC)

GC: Transform from MRF to Network Flow



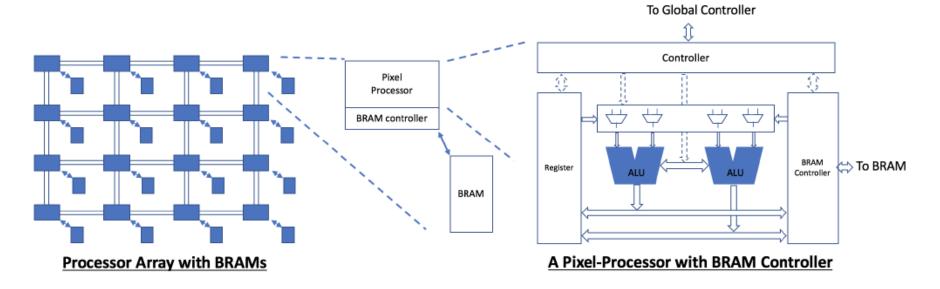
GC: Why Hardware

- Push-Relabel Network Flow: a "min cut" algorithm can be executed (almost) entirely with just neighbor values
- Neighbor: Nodes that share an edge in PGM (N-E-W-S)
- Iterative and Convergent: a "well behaved" algorithm

→Perfect for large images, modeled as grid-MRFs
 →There are tricks for doing gray-scale/color images

GC: Pixel-Parallel Array Processor

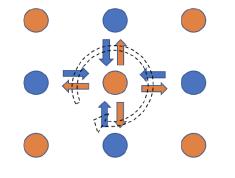
• FPGA target, one processor per pixel

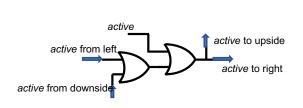


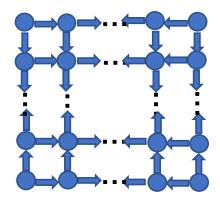
Pixel Processor: Key Tricks

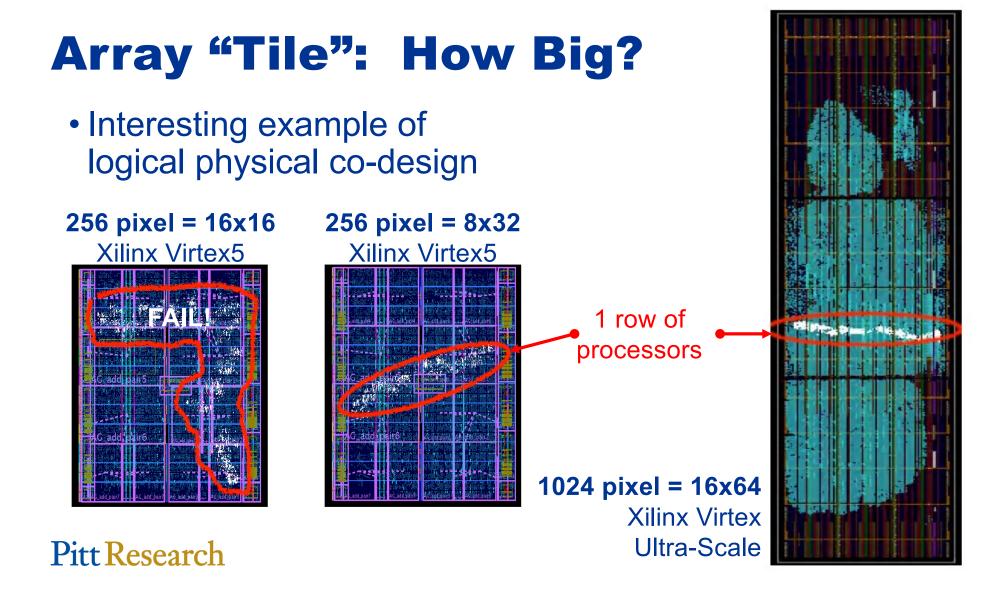
Serial bottlenecks

- Cannot push flow to a node that is already "pushing" out
- **Solution**: Checkerboard scheduling + ordering
- Not all local: Global convergence detection
- **Solution**: O(rows+cols) shift register to array center to check activity



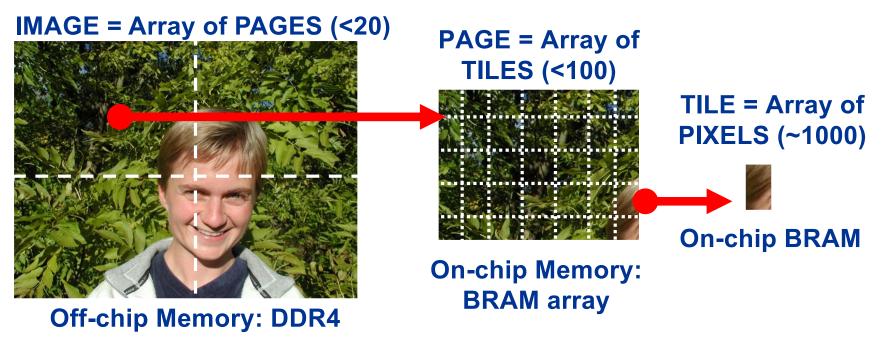






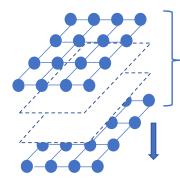
Next: What About "Big" Images?

• We built a full virtual tile (memory) system on array

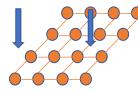


Virtual Tile Architecture

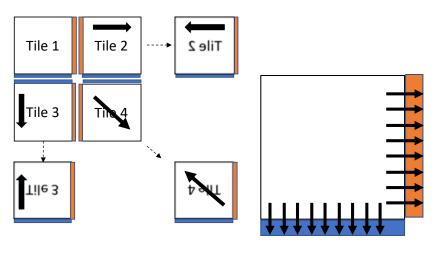
 Virtual tiles "stack" on the physical tile array on-chip



Multiple virtual tiles



Physical tile processor array • Geometric nuances (lots!) at tile (and page) **edges**



Physical tile array

GC Virtual Tile Engine: Results

1536-pixel tile array	Array Size	Slice LUTs	BRAM	-	AXI Memory Protocol	Page Size	Ultra RAM
AWS F-node (Xilinx UltraScale)	16x96 = <u>1536 pixel</u> processor 2*(16+96)=224 shadow processor	86.6%	66.5%	18Kb	512b wide 192 Burst length	60 Virtual Tiles 11.25Mb	16%

	Our Hard-	CUDA	Kobori	Nikitakis	Szeliski	CPU 2	CPU 3
	ware	Cuts 2	et al [1]	et al [2]	et al [15]		
			FPGA 1	FPGA 2	CPU 1		
Device	Virtex UltraScale+	Nividia Titan	Virtex 6	Virtex 7	NA	Intel Xeon E5	Intel i5
Frequency	125 MHz	1405 MHz	201 MHz	260 MHz	NA	3.4GHz	3.1GHz
Image Flower (600x450)	$9.93 \mathrm{ms}$	$11.67 \mathrm{ms}$	$30.7 \mathrm{ms}$	NA	$188 \mathrm{ms}$	$1.03 \mathrm{~s}$	$2.553 \mathrm{~s}$
Image Person (600x450)	$12.27 \mathrm{\ ms}$	$16.09 \mathrm{\ ms}$	$36.7 \mathrm{ms}$	NA	140 ms	1.9 s	$4.716 \mathrm{\ s}$
Image Sponge (640x480)	7.88 ms	1299 ms	$45.8 \mathrm{ms}$	NA	142 ms	1.29 s	$2.67 \mathrm{~s}$
Synthesis (128x128)	0.13 ms	NA	NA	$0.95 \mathrm{ms}$	NA	NA	NA
50 Images Average	$8.20 \mathrm{ms}$	$17.23 \mathrm{\ ms}$	NA	NA	NA	NA	NA
Avg speedup	1X	2.10X	5.77X	7.28X	23.44X	240X	506X

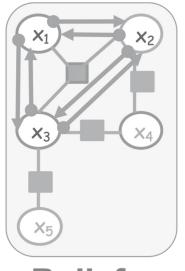
And – It Really Works on Real Images

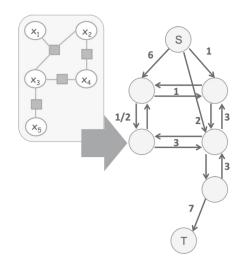
[1] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother, "A comparative study of en- ergy minimization methods for markov random fields with smoothness- based priors," IEEE transactions on pattern analysis and machine in- telligence, vol. 30, no. 6, pp. 1068–1080, 2008.

[2] A. Nikitakis and I. Papaefstathiou, "Highly efficient reconfigurable par- allel graph cuts for embedded vision," in Proceedings of the 2016 Con- ference on Design, Automation & Test in Europe. EDA Consortium, 2016, pp. 1405–1410.

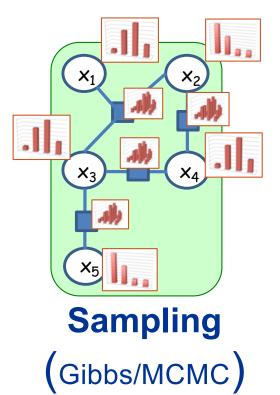
[3] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman, "Geodesic star convexity for interactive image segmentation," in Pro- ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2010.

"Big 3" Inference Methods for PGMs

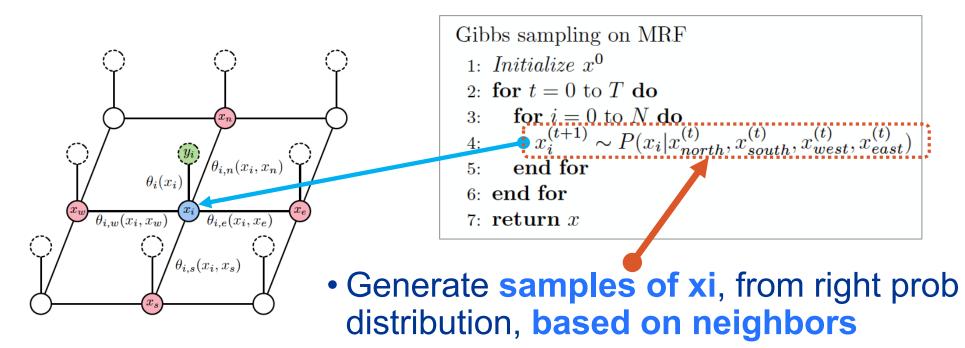




Belief Propagation Graph Cuts (→ Network Flow)

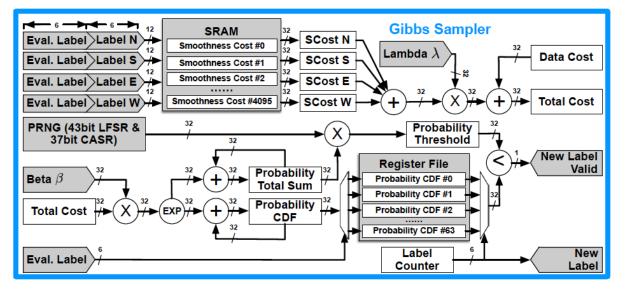


Gibbs Sampling: Serial Baseline



- Lets us compute Pr(xi = Label[k]) \forall k
- Like GC: iterate to convergence

Gibbs Sampler (GS) Core



- Up to 64 labels/node
- 32b variable fixed-pt
- Tightly coupled PRNG
- Iterative architecture for small footprint

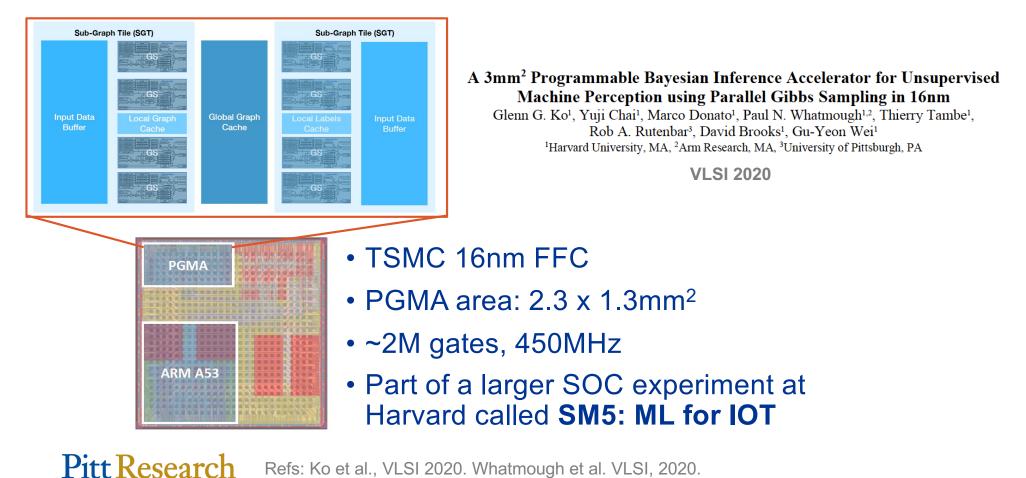
Two Levels of Parallelism

Sample **independent tiles** in parallel – treat as if they were separate images

while (< max Gibbs sampling iterations)
foreach (tile in an image)
while (< max tile sampling iterations)
foreach (node in a tile)
sample (*)</pre>

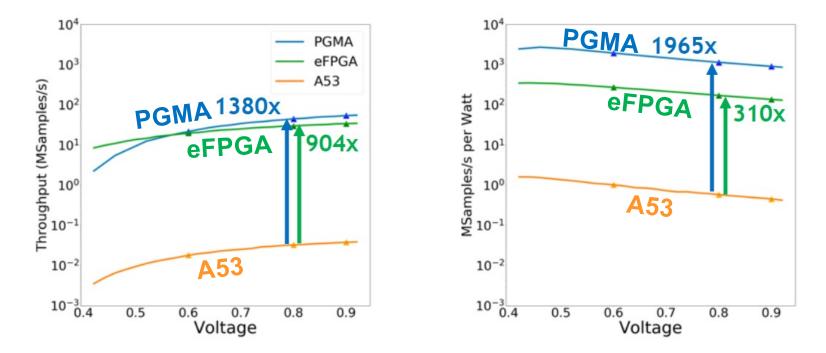
Sample **independent nodes** in parallel – checkerboard / graph coloring schedule

PGMA: Prototype PGM Accelerator



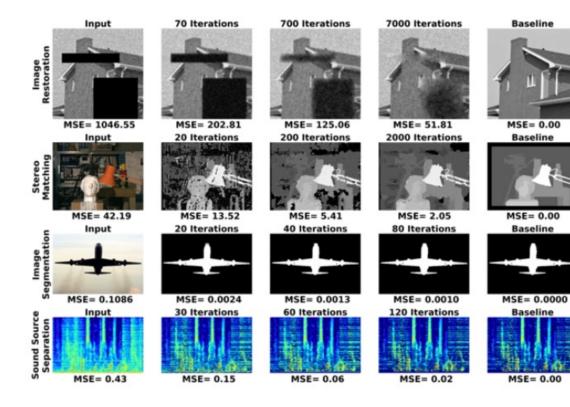
Refs: Ko et al., VLSI 2020. Whatmough et al. VLSI, 2020.

PGMA vs A53 vs eFPGA (on SOC)



• **PGMA**: **1000X+** throughput vs CPU; **6X+** ops/W vs eFPGA Pitt Research

PGMA ML Results



Four example applications:

- Image restoration
- Stereo matching
- Image segmentation
- Sound source separation

Features:

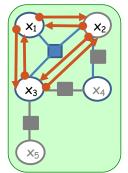
- No labeled dataset
- Completely unsupervised
- Both training and inference on-the-fly

Conclusions

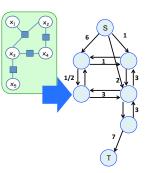
 \exists (AI apps X) [interesting(X) $\land \neg$ DNN(X) \land hardwareworthy(X)]

Jungwook Choi PhD Illinois '16 Hanyang University

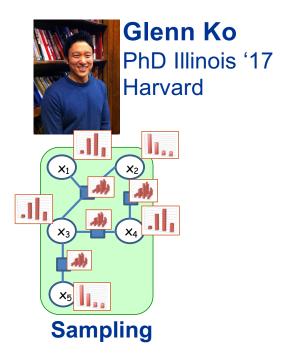
Tianqi Gao PhD Illinois '20 Apple SEG



Belief Prop



Graph Cuts



Acknowledgements

• Contributors:

- Harvard: Yuji Chai, Marco Donato, Paul N. Whatmough, Thierry Tambe, David Brooks and Gu-Yeon Wei
- Illinois: Paris Smaragdis, Minje Kim, Shang-nien Tsai

• Sponsors:

- DARPA/SRC: FCRP C2S2, SONIC, JUMP ADA
- DARPA CRAFT
- Intel and ARM