oing EDA in Disruptive imes: Reflections on Analog and Al

Rob A. Rutenbar

SECONDERING THE

Pitt Research

D

Senior Vice Chancellor for Research Distinguished Professor of CS & ECE University of Pittsburgh

n kan shin shin shin s

IEEE/ACM 2022 INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN 41st Edition

stansend<mark>N</mark>tenstansen

A Talk in 3 Disruptions (3 Chips)

2

Pitt Research

Disruption #1

Pitt Research

~1980

- $\lambda = 4 \mu m$
- Depletion-mode NMOS
- Single metal
- 503 transistors
- 200KHz
- Fabbed by General Motors

Disruption #1

Multiply-Add Circuit

< 100 gates

Pitt Research

Technology

4000nm node (~½-CMOS)

Disruption #1: Mead & Conway

© Rob A. Rutenbar, U. Pittsburgh

~My 1980 Design Methodology & Toolchain

- Ladder
- Line-printer
- Masking tape
- Sharpie
- DRC checker
- BSD Unix "vi" editor

Disruption #2

INPUT SPECIFICATIONS AND RESULTS FOR FABRICATED OP AMPS

Parameter	Units	Circuit OTA-1			Circuit 2Stage-1		
		Spec	SPICE Results	Chip Results	Spec	SPICE Results	Chip Results
Gain	dB	≥ 60	60	69.5	≥ 45	45.2	48.4
Unity Gain Freq.	MHz	≥ 1.0	1.25	0.993	≥ 2.8	2.52	2.6
Phase Margin	Deg.	≥45	46	43	≥ 60	82	85
Load Capacitance	pF	10	10	~ 14	14	14	- 14
Supply	V	± 2.5	± 2.5	± 2.5	± 2.5	± 2.5	± 2.5
Slew Rate	V/µS	≥ 2.0	2.1	-1.6/+2.0	≥ 2.5	2.42	-3.0/+4.5
Power	mW	≤ 3.0	0.63	0.62	-	0.56	0.56
Input Offset	mV	-	6.6	11.4	-	16	18.4

1988 3μm CMOS

© Rob A. Rutenbar, U. Pittsburgh

Disruption #2: Algorithmic Analog EDA

ACACIA: THE CMU ANALOG DESIGN SYSTEM

L.R. Carley, D. Garrod, R. Harjani, J. Kelly, T. Lim, E. Ochotta and R.A. Rutenbar

Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA, 15213

Abstract

A framework that automates the design of common analog integrated circuit modules has been developed. The framework, ACACIA, consists of three tools: OASYS, which transforms module specifications into sized schematics; ANAGRAM, which transforms sized schematics into mask geometry; and a graphics interface that facilitates automatic exploration of trade-offs between design specifications by providing 3-D display of attainable performance surfaces. pieces of ACACIA (see Fig. 1), and in particular, its interface mechanisms that automate and facilitate the exploration of performance trade-offs.

2. Specifications to Schematics

The first component of the ACACIA system is OASYS [9, 10], which is a general framework for hierarchical synthesis of sized circuit schematics from performance and process specifications.

First synthesized circuits from the CMU analog tools

Pitt Research

Aside: Timeline...

1986 - 1998

1998 - 2004

2004 - today

Pitt Research

Aside: Timeline...

cādence[®]

Virtuoso Analog Design Environment GXL

Variation analysis simplified

Cadence® Virtuoso® Analog Design Environment GXL provides all the capabilities of Virtuoso Analog Design Environment L and XL for thorough exploration and validation of a design. Additionally, Virtuoso Analog Design Environment GXL enables you to explore parasitic effects and sensitivities to improve yield; create design-specific worst-case corners; and find the optimum design over nominal, corner, or target yield. A flexible licensing methodology further ensures a cost-effective application of the tool's capabilities.

Neolinear tools became Virtuoso ADE-GXL

Pitt Research

Broader Disruption: *Algorithmic* EDA

Twin disruptions of 1980s, 90s

Moore's law

Exponentially better, cheaper hardware

Rise of algorithms

- Model problems formally, with principled goals
- Measure, approximate circuit results, inside algorithms
- Focus on accuracy, complexity & efficiency
- We apply ideas from optimization

Synthesis = Algorithms + Optimization

• Smart models & engines to support **principled search** for best design to **meet designer constraints**

Pitt Research

Analog EDA: Fundamental Debate

• Analog – it's art, mysterious, • Nope – it's optimization: all patterns in my head

big hard optimization

Landscape of "Core" Analog Tools

Constraint Capture

Sizing & Biasing Yield Optimization

Device Gen

Pitt Research

Placement

Two (Historical) Analog Examples

Practical Spice-in-the-Loop
 optimizers for sizing/biasing

Pitt Research

 Automatic layouts with both aesthetics & performance

© Rob A. Rutenbar, U. Pittsburgh

Looking Back

What did we get right? What did we get wrong?

Simplify All EDA into 2-Dim Space

• Claim*: There are only 2 kinds of EDA tools

PAIN RELIEF

Pitt Research

Aside: 20+ Yrs of Moore's Law...

Pitt Research

Teaser for Final Part of Talk

Analog – expert

Analog – optimizer

Pitt Research

A 3mm² Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm

Glenn G. Ko¹, Yuji Chai¹, Marco Donato¹, Paul N. Whatmough^{1,2}, Thierry Tambe¹, Rob A. Rutenbar³, David Brooks¹, Gu-Yeon Wei¹ ¹Harvard University, MA, ²Arm Research, MA, ³University of Pittsburgh, PA

- TSMC 16nm FFC
- ~2M gates, 450MHz
- Part of a larger SOC experiment at Harvard called SM5: ML for IOT

Pitt Research

PGMA vs Arm53 vs eFPGA (on SOC)

• PGMA: 1000X+ throughput vs CPU; 6X+ ops/W vs eFPGA

© Rob A. Rutenbar, U. Pittsburgh

Key Takeaways

ImageNet Classification with Deep Convolutional Neural Networks

 The world changed fundamentally in 2012

• **AI** is invading everything, everywhere (even **Rob**...)

Alex Krizhevsky Ilya Sutskever University of Toronto University of Toronto kriz@cs.utoronto.ca ilya@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

NIPS 2012

• Even EDA...

Quantifying AI in EDA: ICCAD22

ICCAD22 program: Count every talk, tutorial, workshop, slot, that mentions AI, ML, deep nets...

AI AI NOT AI 172 ICCAD event slots

Pitt Research

BTW – Same for DAC22

DAC22 program: Count every talk, tutorial, poster, slot, that mentions AI, ML, deep nets...

AI AI NOT AI S36 DAC event slots

Pitt Research

AI = Statistical regression, in high-dimensional spaces...

...to find low-dimensional patterns

Analog and AI, Revisited

Analog – expert

Pitt Research

 Analog – optimizer & deep patterns

Analog as "Operationalized Patterns"

"This is ugly"
"This is not what I had in mind"

Fundamental truth about analog: Aesthetics often a **surrogate** for correctness

Pitt Research

AI Meets "Core" Analog Tools...? Gain 60dB UGF 111MHz Phase 60deg Α Α AI Slew 2V/us CMRR: 60dB PSRR: 70dB THD: 1% Sizing Center Capture Α Α Α ModGen Place Route Pitt Research

Digital Ex: AI Meets Floorplanning

Article A graph placement methodology for fast chip design

https://doi.org/10.1038/s41586-021-03544-w Received: 3 November 2020 Accepted: 13 April 2021 Published online: 9 June 2021

4-w Azalia Mirhoseini¹⁴⁵⁸, Anna Goldie¹³⁴⁵⁵, Mustafa Yazgan², Joe Wenjie Jiang¹,
 Ebrahim Songhori¹, Shen Wang¹, Young-Joon Lee², Eric Johnson¹, Ornkar Pathak²,
 Azade Nazi¹, Jiwoo Pak², Andy Tong², Kavya Srinivasa², William Hang³, Emre Tuncer²,
 Quoc V. Le¹, James Laudon¹, Richard Ho², Roger Carpenter² & Jeff Dean¹

NEWS AND VIEWS 09 June 2021

AI system outperforms humans in designing floorplans for microchips

A machine-learning system has been trained to place memory blocks in microchip designs. The system beats human experts at the task, and offers the promise of better, more-rapidly produced chip designs than are currently possible.

EDITORIAL 09 June 2021

Google's AI approach to microchips is welcome – but needs care

Artificial intelligence can help the electronics industry to speed up chip design. But the gains must be shared equitably.

Pitt Research

Bonus Disruption...

Pitt Research

courserd **VLSI CAD MOOCs**

Since 2013, I'm running MOOCs on VLSI CAD

COURSERCE | Global Partners

Courses Partners About - | Sign In Sign Up

ILLINOIS

VLSI CAD: Logic to Layout

Rob A. Rutenbar

A modern VLSI chip has a zillion parts -- logic, control, memory, interconnect, etc. How do we design these complex chips? Answer: CAD software tools. Learn how to build these tools in this class.

Workload: 10-12 hours/week

Enrollment: Coursera CAD MOOCS

Enrollment: Coursera CAD MOOCS

Hypothesis: COVID is responsible for more global Interest in EDA than anything we've seen – *since this book*

ICCAD & SIGDA:

Thank You!

Pitt Research

