From Wall Street to Silicon Valley: Using the Mathematics of Money & Risk for Fast Statistical IC Design

Rob A. Rutenbar (and Amith Singhee)
Professor, Electrical & Computer Engineering
rutenbar@ece.cmu.edu
The Problem: Statistical Variation

- At nanoscale, nothing is deterministic anymore
- How to evaluate designs?

Random Dopant Fluctuations

Line Edge Roughness
K. Shepard, U. Columbia

Gate Oxide Variation
To Evaluate Circuit Impact: Monte Carlo

- Sample each statistical variable
- Parameterize one circuit, simulate it
- Repeat--n samples
Monte Carlo Math: Just A Big Integral

\[\text{Est} = \int \cdots \int f_{\text{ckt}}(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} \]

\[\approx \frac{1}{n} \sum F(\mathbf{u}) \]

Can transform to sample uniformly from \(s \)-dim unit cube

\(s \) statistical vars
\(s \)-dimensional prob
Evaluate Circuit Impact: Monte Carlo

- **PRO:** Accurate, flexible, general
- **CON:** Slow, slow, slow...

\[\approx \left(\frac{1}{n} \right) \sum \hat{F}(u) \]

Uniform random s-dim sample

\[V_{T1} = \]
\[V_{T2} = \]
\[V_{T3} = \]
\[V_{T4} = \]
\[V_{TN} = \]
Why is Monte Carlo Painful?

- High-dim problems: \(s \) is big (100-1000)
- Profoundly nonlinear: *Nanoscale physics*
- Accuracy matters: \(~1-5\%\) error
- Speed matters: *Many samples*
- Samples expensive: *Simulate each circuit*
Question: Who Else Has This Problem?

Computational finance(!)

- Valuing complex financial instruments, derivatives
- High-dimensional, nonlinear, statistical integrals
- Speed+accuracy matters here, e.g., ~real-time decision-making
Big Idea: Quasi Monte Carlo (QMC)

- Classical Monte Carlo
 - Uniform pseudo-random pts
 - Surprise: *not* very uniform

- Error for n samples
 \[O(1 / \sqrt{n}) \]

- Quasi Monte Carlo
 - *Deterministic* samples
 - “Low-discrepancy” pts

- Error for n samples
 \[O(1 / n) \]
Computational Finance Example

- Eval 5-year discount price for a bond
 - From [Ninomiya, Tezuka, App Math Finance 1996]

![Error (log scale)]

- Ideal ~ $1/\sqrt{n}$
- Monte Carlo
- Ideal ~ $1/n$
- QMC

1439 dimensions

150x faster
Does QMC Work for Circuits? (Yes!)

- See speedups from 2X to 50X
- ...but requires some subtlety to map to QMC
- See: [Singhee, Rutenbar, ISQED 2007]

403 dimensions
Full 64b SRAM col

QMC

Pr(write < t_w) = 0.9

Pseudo Random
Very Promising Speedups

- Same 403-dimensional, 64b SRAM column

\[n^{-0.3912} \]

\[n^{-0.6622} \]

~9x faster for 1% error

[Singhee, Rutenbar, ISQED 2007]
SRAM reliability is all about **far tails** of stats

- **Why?** High replication (~10^8 bits) of core circuits
- 3σ doesn’t cut it for 100M cells; need 6σ, 7σ, 8σ...

Problem: *Intractable* Monte Carlo runs

- 1M Monte Carlo sims predicts (unreliably) to $\sim 4.5\sigma$
What Do We Need To Solve This...?

- **Ultra fast sampling** of rare events
 - Put Monte Carlo *samples* out in far tails -- directly

- **Accurate analytical pdf models** of rare tails
 - Using these samples, model lets us predict *farther*
Efficiently Sampling \textit{Just} the Tail

- \textbf{Note:} \textit{Generating} MC samples is cheap, \textit{Simulating} these samples is costly

- \textbf{Idea:}
 1. \textit{Generate} regular MC samples…
 2. …but \textit{block} points that are “very probably” \textit{not} in tail
 3. \textit{Simulate} the rest – i.e., the points we do not block

\begin{itemize}
 \item \textbf{Can build this classifier filter very efficiently}
\end{itemize}
We Call the Idea: **Statistical Blockade**

- **Circuit pdf**
- **Tail**
- **Sample points**

1. **Simulate starting set** (few points, *fast*)
2. **Build classifier** (*fast*) (uses ideas from data-mining)
3. **Generate MC samples** (*fast*)
4. **Classify** sample points (*fast*)
5. **Block** nontail points (*fast*)
6. **Simulate** the rest (*slow*)

[Singhee, Rutenbar DATE 2007]
Modeling Statistics of Rare Events...

- **Extreme Value Theory (EVT)**
 - Behavior of extreme (rare) values of distributions
 - (If hurricanes are i.i.d random variables, we’d like to know the statistics of the *largest* waves...)}
EVT: Modeling the PDF in the Tail:

- Recall Central Limit Theorem: \(\sum \) (i.i.d. samples) \(\rightarrow \) Gaussian
 - Question: Is there a similar result for these tails of “extreme” results ...?
 - Answer: YES – Extreme Value Theory (EVT)

On each of \(N \) wafers, identify cells slower than threshold \(t \). What is their distrib? EVT tells us!

- EVT gives simple analytical form for conditional tail distrib

\[
G_{a,k}(x) = \begin{cases}
1 - \left(\frac{1 + \frac{kx}{a}}{\alpha} \right)^{\frac{1}{k}}, & k \neq 0 \\
1 - e^{-x/a}, & k = 0
\end{cases}
\]
Result: Complete 64b SRAM Column

- 90nm 64b SRAM column with write driver and column mux
- ~ 400 devices; model Write-time CDF
- Speedup: ~16X

 STD Monte Carlo: 100,000 sims
 Statistical Blockade: 6,314 sims

1000 sims to build classifier
100,000 points → 5314 sims
Result: Analytical EVT Model

- Recently validated novel analytical DRV model
 - Model of Data Retention Voltage, [Calhoun et al. UVa, ESSCIRC’07]
 - Validated to 6σ, via billion element Monte Carlo run…
 - …but only did 41,721 SPICE sims; speedup $\sim 23,000X$
Summarizing

- Brute-force Monte Carlo *hurts* a lot …
 - For large, nonlinear circuit yield calculations
 - For rare event simulation
 - For… just about everything, actually

- We can do *better* with smart Monte Carlo
 - From computational finance
 - From insurance risk
 - From other apps which involve $$$ + probability

- Early CMU results: QMC, Statistical Blockade
 - On real circuits, speedups of 10x – 10,000x
Thank You!

Acknowledgements

- My CMU student, Amith Singhee, whose PhD is the basis of all the results shown in this talk

- Prof. Benton Calhoun and Jiajing Wang of U Virginia, for sharing their statistical DRV model

- Funding from Semiconductor Research Corporation

- Funding from the Focus Center for Circuit & System Solutions (C2S2), one of five such focus centers managed by the Focus Center Research Program, an SRC program.