What’s Up With Analog (CAD)…?
A Talk in 3 Parts

- Looking back: Analog CAD history in review
- Reflection: What we got right (& not...)
- Looking forward: New opportunities
A Little Analog History...

- In first decade (more or less) of 21st century, lots of startups doing first ‘real’ products, based on previous decade of R&D
A Little History...

- Most of them died; a few got bought by big EDA players; technologies added to big, flagship analog/mixsig platforms
We Made Some Real Progress

Digital Methodology
- Synthesis
- Optimization
- Verification
- Reuse & IP

Analog Methodology
- Toward Synthesis
- Toward Layout
- Toward Stats Optimize
- Toward Reuse & IP
Core Strategy: Optimization-Based Design

- All successful approaches have this overall structure

- Use some clever form of heuristic or numerical search
 - **Optimization engine:** proposes candidate circuit solutions
 - **Evaluation engine:** evaluates quality of each candidate
 - **Cost-based search:** cost metric represents “goodness” of design
Key Example: Sizing/Centering Tools

- For device-level ckt design, you have to do these tasks

Generate proper specs

Design proper circuit topology

Design proper device sizing/biasing

Optimize for centering, yield

Optimization works well here

Gain 60dB
UGF 111MHz
Phase 60deg
Slew 2V/us
CMRR: 60dB
PSRR: 70dB
THD: 1%
...

Rob A. Rutenbar 2016
Some Commercial Successes

- Ex: Sizing (and also layout) very useful for migration
- Can size, optimize for perform/yield, layout, migrate ...

STMicroelectronics result
[Shah, Dugalleix, Lemery DATE02]

180nm
Auto Sizing
Auto Layout
Area: ~9000 µm²
Power: 9.15mW

120nm
Auto Sizing
Auto Layout
Area: ~4000 µm²
Power: 1.1mW

[Source: Cadence]
Broad Landscape Emerged...

- **Simulation-based tools**
 - “SPICE-in-the-loop”
 - **PRO**: same setup as validation
 - **CON**: slowest to run; scaleup?

- **Analytical modeler tools**
 - “convex”, “smooth” etc
 - **PRO**: run fast, scale to big ckts
 - **CON**: long setup; accuracy?

Ex: Cadence Virtuoso ADE

Ex: Synopsys Titan AVP

© Rob A. Rutenbar 2016
Core Layout Model: Design at 3 Levels

- **Devices** play role like gate-level cells in digital ASIC, but more complex, malleable; we need **device-generators**

- Macroscopic level, it's all more like floorplanning, placement, routing
Analog Layout: DeviceGen + Place/Route

- To first order, this is a *(very constrained)* place/route task...

- But with *very* complex generators for atomic pieces (devices)
Again, Some Commercial Successes...

Human resources comparison (normalized)

- Digital
- Analog B/E
- Analog F/E

Previous Design
New Design
Porting (Estimation)

Toshiba

Handcrafted

Automatic Place/Route

Courtesy: Neolinear, Cadence
© Rob A. Rutenbar 2016
So, why is analog not yet a ‘solved’ problem...?
Pause, Reflect...

...then, I propose to commit Philosophy

(I warned you....)
Aggressive Philosophical Proposition...

- There are, in real world, only **2** kinds of EDA tools

...and you must figure out *what kind* you are building
Lessons Learned from First-Gen Tools

- **Things we got RIGHT**
 - Tools based on **optimization**
 - Models & setup for custom design are **critical synthesis IP**
 - Tools embedded in **same design flows** as manual ckt design
 - **Divide & conquer** (capture/synth/gen/P&R, etc) critical

- **Things we MISSED**
 - **Usage models** – how real people do real designs
Our 1st Generation of Sizing Synthesis Tools

- Built **Sizing Optim**
- Then **Constraint Mgr**
- Then **Statistical Centering**

Expected Designer Interest

- **Sizing**
- **Constraint Manage**
- **Statistical Center**

© Rob A. Rutenbar 2016
Our 1st Generation of Sizing Synthesis Tools

Built Sizing Optim

Optimization Engine

Evaluation Engine

Then Constraint Mgr

Then Statistical Centering

Constraints

Statistical Center

Sizing

Actual Designer Interest

© Rob A. Rutenbar 2016
1st Gen Synthesis Tools Revisited

Built **Sizing Optim**

Then **Constraint Mgr**

Then **Statistical Centering**

Optimization Engine

Evaluation Engine

Constraints

Statistical Center

Actual Designer Interest
Our 1st Gen of Layout Synthesis Tools

- Built **Device Generators**
- And **Placer**
- And **Router**

Expected Designer Interest

© Rob A. Rutenbar 2016
My 1st Gen of Layout Synthesis Tools

Built **Device Generators**

And **Placer**

And **Router**

Actual Designer Interest
Why? #1 Your Schematic is NOT What You Lay Out

- Map ckt to what can really work in layout
- Groups of devices w/ complex constraints
- Surprise: enormous pain here to get right; gen’s reduce layout time & reduce size (a lot)
Why #2: Curse of Analog Aesthetics...

- Consider thought experiment: I want 12 analog layouts
Why #2: Curse of Analog Aesthetics...

- Experimental method 11 layout experts & 1 CAD tool
Why #2: Curse of Analog Aesthetics...

- Probability $\to 1$, will get 12 *different* layouts, all *correct*
Why #2: Curse of Analog Aesthetics...

- Probability → 1, all humans think all other layouts look wrong
The Real *Reason* for Analog Aesthetics

- Why this remarkable, relentless focus on “my way” of layout?
- Aesthetics is often a surrogate for correctness
 - Not everything that matters in analog is robustly – or even *explicitly*, and *correctly* – represented in the design process.
- Consequence: Aesthetics used for insurance!

Hey, that looks *strange*, right?
Future Opportunity....
Context: Bifurcating Analog Space

Different kinds of design problems in 2 analog spaces

- **CHEAP analog**
 - Need the function && cheap
 - Don’t need 20M gates of logic

- **AGGRESSIVE analog**
 - Need function AND integration
 - Lowest-power + highest-volume

- **Pro/Con**
 - Cheap, fewer nm effects
 - Can’t integrate lots of gates

- **Pro/Con**
 - Low-power, access to 50M+ gates
 - nm grief is worse here
Today, most CHEAP ANALOG is mostly moving toward whatever is the LAST PLANAR CMOS NODE ~28nm

AGGRESSIVE ANALOG → 10nm
New Challenge: Nonplanar FinFET Devices

Which of these is not like the others?

- 180nm
- 90nm
- 45nm
- 16nm_FinFET

Courtesy Elias Fallon, Cadence Design, ISVLSI 2016
New Challenge: Nonplanar FinFET Devices

“Mature-node”

“Advanced node”

Courtesy Elias Fallon, ISVLSI 2016
The FinFet Challenge

- Devices are radically different, dominated by litho regularity
- Interconnect stack also different, very fine pitch for lower Metals

Source: Jan et al, “A 22nm SOC platform technology featuring 3-D tr-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SOC applications,”, Prof IEEE IEDM, 2012.

FinFet Consequences...

- Custom analog cells look like **row-based layouts**...

Matching rules (dummies)
Density rules (FEOL, MEOL)
Gradient rules (for transition)
Coloring rules (routing)

FinFet Upside (Sort of...) for Analog Tools...

- 2001: 130nm
- 2005: 90nm, 65nm
- 2010: 45nm, 32nm, 22nm
- 2016: 14nm, 10nm, 7nm, 5nm

Circuit Designer

Layout Designer

Cadence: Layout Effort vs. Process Node

- **24x** the layout cost designing @ 7 vs 40nm

Introduction of FinFets

Process Node (NM):

<table>
<thead>
<tr>
<th>Process Node</th>
<th>40nm</th>
<th>28nm</th>
<th>16/14nm</th>
<th>10nm</th>
<th>7nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Est. (vs layout @ 40nm)</td>
<td>-</td>
<td>2</td>
<td>6</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Industry Estimate Multiplier</td>
<td>-</td>
<td>2x</td>
<td>3x</td>
<td>2x</td>
<td>2x</td>
</tr>
</tbody>
</table>

© Rob A. Rutenbar 2016
Summary

- **Looking backward: Analog tools**
 - CAD = *Optimization* + constraints
 - Learned: aesthetics & usage matter

- **Looking ahead: Analog Tools**
 - Analog essential for *power/volume*
 - Huge opportunity to go at finFETs (pain)
Acknowledgements

- Thanks to:
 - Elias Fallon (Cadence)
 - Jeremiah Cessna (Cadence)
 - Akshat Shah (Cadence)
 - ... for helpful conversations of new/old analog problems